National Library of Medicine Citations for Allergic Rhinitis (Hay Fever)

The following have had published studies. These are report on the averages of a group of patients; they do not apply to all patients and are not necessary predictive.

Some studies were done on people with specific conditions, ethnic origin or diet style (i.e. traditional Chinese Diet versus Western Diet), which may be why some shifts are in opposite directions.

See this post about overlapping bacteria/taxa and possible progression of conditions.

AI Engines For more Details: PerplexityKagi LabsYou

Note these are associations and not causation. Items being high or low may be part of the immune response.

You do not have any samples under this email

A percentile below 20% can be deemed to be low, and above 80% as high. These are arbitrary values.

Tax Rank Tax Name Shift Percentile Distribution Citation Link
class Actinomycetia (NCBI:1760 ) Low Distribution    ๐Ÿ“š PubMed
family Porphyromonadaceae (NCBI:171551 ) Low Distribution    ๐Ÿ“š PubMed
family Ruminococcaceae (NCBI:541000 ) High Distribution    ๐Ÿ“š PubMed
genus Bacteroides (NCBI:816 ) High Distribution    ๐Ÿ“š PubMed
genus Bifidobacterium (NCBI:1678 ) Low Distribution    ๐Ÿ“š PubMed
genus Bifidobacterium (NCBI:1678 ) Low Distribution    ๐Ÿ“š PubMed
genus Clostridium (NCBI:1485 ) High Distribution    ๐Ÿ“š PubMed
genus Enterobacter (NCBI:547 ) High Distribution    ๐Ÿ“š PubMed
genus Enterococcus (NCBI:1350 ) High Distribution    ๐Ÿ“š PubMed
genus Escherichia (NCBI:561 ) High Distribution    ๐Ÿ“š PubMed
genus Lactobacillus (NCBI:1578 ) Low Distribution    ๐Ÿ“š PubMed
genus Parabacteroides (NCBI:375288 ) High Distribution    ๐Ÿ“š PubMed
genus Prevotella (NCBI:838 ) High Distribution    ๐Ÿ“š PubMed
genus Pyramidobacter (NCBI:638847 ) High Distribution    ๐Ÿ“š PubMed
order Bacteroidales (NCBI:171549 ) High Distribution    ๐Ÿ“š PubMed
phylum Actinobacteria (NCBI:201174 ) Low Distribution    ๐Ÿ“š PubMed
phylum Proteobacteria (NCBI:1224 ) Low Distribution    ๐Ÿ“š PubMed
species [Clostridium] hylemonae (NCBI:89153 ) High Distribution    ๐Ÿ“š PubMed
species Acetivibrio straminisolvens (NCBI:253314 ) Low Distribution    ๐Ÿ“š PubMed
species Acidaminococcus intestini (NCBI:187327 ) High Distribution    ๐Ÿ“š PubMed
species Agathobaculum butyriciproducens (NCBI:1628085 ) Low Distribution    ๐Ÿ“š PubMed
species Anaerotruncus colihominis (NCBI:169435 ) High Distribution    ๐Ÿ“š PubMed
species Bifidobacterium adolescentis (NCBI:1680 ) Low Distribution    ๐Ÿ“š PubMed
species Bifidobacterium catenulatum (NCBI:1686 ) Low Distribution    ๐Ÿ“š PubMed
species Bifidobacterium longum (NCBI:216816 ) Low Distribution    ๐Ÿ“š PubMed
species Clostridium butyricum (NCBI:1492 ) Low Distribution    ๐Ÿ“š PubMed
species Coprococcus eutactus (NCBI:33043 ) Low Distribution    ๐Ÿ“š PubMed
species Dialister succinatiphilus (NCBI:487173 ) Low Distribution    ๐Ÿ“š PubMed
species Enterocloster asparagiformis (NCBI:333367 ) Low Distribution    ๐Ÿ“š PubMed
species Eubacterium xylanophilum (NCBI:39497 ) Low Distribution    ๐Ÿ“š PubMed
species Intestinimonas butyriciproducens (NCBI:1297617 ) Low Distribution    ๐Ÿ“š PubMed
species Muricomes intestini (NCBI:1796634 ) Low Distribution    ๐Ÿ“š PubMed
species Murimonas intestini (NCBI:1337051 ) Low Distribution    ๐Ÿ“š PubMed
species Oscillibacter valericigenes (NCBI:351091 ) Low Distribution    ๐Ÿ“š PubMed
species Oxalobacter formigenes (NCBI:847 ) Low Distribution    ๐Ÿ“š PubMed
species Phocaeicola massiliensis (NCBI:204516 ) Low Distribution    ๐Ÿ“š PubMed
species Rothia mucilaginosa (NCBI:43675 ) Low Distribution    ๐Ÿ“š PubMed
species Ruminiclostridium papyrosolvens (NCBI:29362 ) Low Distribution    ๐Ÿ“š PubMed
species Ruminococcus gnavus (NCBI:33038 ) High Distribution    ๐Ÿ“š PubMed
species Sutterella wadsworthensis (NCBI:40545 ) Low Distribution    ๐Ÿ“š PubMed

All suggestions are computed solely on their predicted microbiome impact. Safety, side-effects etc must be evaluated by your medical professionals before starting. Some items suggests have significant risk of adverse consequences for some people.

Special thanks to David F Morrison and Geert Van Houcke for doing Quality Assurance. Special thanks to Oliver Luk, B.Sc. (Biology) from BiomeSight for spot checking the coding of data from the US National Library of Medicine

This is an Academic site. It generates theoretical models of what may benefit a specific microbiome results.

Copyright 2016-2023 Lassesen Consulting, LLC [2007], DBA, Microbiome Prescription. All rights served.
Permission to data scrap or reverse engineer is explicitly denied to all users. U.S. Code Title 18 PART I CHAPTER 47 ยงโ€ฏ1030, CETS No.185, CFAA
Use of data on this site is prohibited except under written license. There is no charge for individual personal use. Use for any commercial applications or research requires a written license.
Caveat emptor: Analysis and suggestions are based on modelling (and thus infererence) based on studies. The data sources are usually given for those that wish to consider alternative inferences. theories and models.

Microbiome Prescription do not make any representations that data or analyses available on this site is suitable for human diagnostic purposes, for informing treatment decisions, or for any other purposes and accept no responsibility or liability whatsoever for such use.
This site is not Health Insurance Portability and Accountability Act of 1996 (HIPAA) compliant.


The awesome web hosting site that we use. Try it if you need to host (or unhappy with current provider)